Utilizing Traffic Simulation Tools with MOVES and AERMOD

Extended Abstract 2011-A-717-AWMA

Presented by George Noel, Dr. Roger Wayson, and Adam Klauber

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation

Overview

- Quantify the emissions and fuel consumption associated with traffic congestion from Commercial Motor Vehicle (CMV) crashes
- Project Description
- Traffic Simulation
- Emissions Analysis
- Future Use with Dispersion Analysis

John A. Volpe National Transportation Systems Center

Field CMV Crash Delay Data

٠

All States contacted for crash data – Kentucky and Pennsylvania contributed statewide CMV crash closure duration and location data

Attribute	Kentucky	Pennsylvania		
Location	Road mile marker	Latitude/longitude		
Duration	Discreet value of lane closure	7 range values for incident (e.g. 0-30 min.)		
Severity	Fatal, Injury, Property Damage Only (PDO)	Fatal, Injury, PDO		
Truck type	No data	Yes		
Urban/rural distinction	As defined by Kentucky State Highway Patrol	As defined by PennDOT		
Vehicle configuration	4 truck types, 2 bus types	7 truck types, 2 bus types		
Other relevant data	Hazmat presence, other involved vehicles	# injuries/fatalities, Hazmat presence		

U.S. Department of Transportation Research and Innovative Technology Administration

CMV Crash Delay TSIS-CORSIM Tool

- **TSIS** (Traffic Software Integrated System) **CORSIM** (CORridor-microscopic SIMulation program) version **6.2** (Feb. 2010)
 - Components

•

- NETSIM for urban streets (or rural non-freeway)
 - FREESIM for freeways
- Investigation Sequence
 - Simulation Design \rightarrow Translation \rightarrow Processing \rightarrow Outputs

Problem: Emissions Traffic Modeling Did Not Directly Align with Emissions Modeling

- Emissions estimations relied on simplistic vehicle performance (MOBILE)
 - Constant velocities
 - Non-validated idling times
 - Limited set of pre-defined drive cycles
- What happened with emissions values?
 - Non-alignment with traffic simulations
 - Low fuel burn estimates (paradoxical results)
 - Low nitrous oxides (NOx) estimates

Vehicle Drive Cycle Example

From: http://www.daham.org/basil/leedswww/emissions/drivecycles.htm

John A. Volpe National Transportation Systems Center

•

Solution: Traffic Simulation Animation Files to Provide Vehicle Specific Power

Inquiries to subject matter experts revealed possible solution

- 1. Obtain animation file vehicle time-step data from traffic simulation
- Translate vehicle performance (in binary code) to database via Volpe Center developed parser tool. Actual performance factors:
 - Vehicle aerodynamic drag
 - Road surface friction
 - Inertia forces
- 3. Utilize vehicle specific power equation to calculate more accurate engine performance
- 4. Run US EPA MOVES model on project level to obtain associated emissions estimates

From: Jimenez, J et .al. "Vehicle Specific Power: A Useful Parameter for Remote Sensing and Emission Studies" 1999

(Webster and Shih, 1996)

 $= \sum |SP_i - SP_{i-1}|$

DPWRSUM

John A. Volpe National Transportation Systems Center

Traffic Simulations Overview

Traffic Simulation runs (TSIS CORSIM tool – version 6.2)

- Baseline cases (without crashes) Monte Carlo 10 runs each
- Crash scenarios, Monte Carlo 40 runs each
 - Full closures (15 minutes; 1¹/₂ hour; 4 hr) diversions for longer 2 runs
 - Partial closures (same durations as full closure)
- Network configurations
 - Expressway, urban & rural (without surface network)
 - Arterial, urban only (with connected expressway)
 - Other, urban & rural local/collector/minor arterial (with connected expressways)

John A. Volpe National Transportation Systems Center

Traffic Simulation Details

Baseline Scenario Runs

- Facilities 5 representational categories
- Volumes (50-6,000 vehicles per hour)
- Lane Number range (2-6 bidirectional) HPMS data
- Fleet Composition
- Speeds Freeflow (HPMS data)

Crash Scenario Runs

- Baseline Facility, Volume,
 - Freeflow, Volumes, Fleets, and

John A. Volpe National Transportation Systems Center – Land closure durations

(Kaptualy, and Dappayly and

Baseline Scenario

Crash Scenario

Traffic Simulation Details

•

Scenario Observed Requirements

- Roadway length sufficient to contain traffic queues
- Extended duration road and lane closures
 - Freeway utilizes TSIS-CORSIM incident feature
 - Non-freeway necessitated alternative introduced measures (e.g. dummy traffic controls, etc.)
- Deterministic vehicle/driver
 performance for diverted traffic

Traffic Simulations Output John A. Delta Vationst ibutions (medians value selected) baseline delay subtracted

U.S. Department of Transportation Research and Innovative Technology Administration

9

Emissions Analysis

Emissions Analysis Methodology

- Parsing of TSIS-CORSIM Binary Files
 - Utilize Parser Application developed by Volpe
 - Parser reads second by second CORSIM animation file data and calculates VSP
 - · VSP is calculated for each Link and separated by vehicle type
- Motor Vehicle Emission Simulator (MOVES) 2010a
 - Parser Application creates an output table that utilizes MOVES Operating Mode Distribution feature
 - Operating Mode Distribution determines drive cycle across each link for each vehicle type by hour
- Emissions Analysis
 - Incident minus Baseline to estimate the emissions impacts

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation

Research and Innovative Technology Administration

٠

Parsing of TSIS-CORSIM Binary Files

TSIS-CORSIM Binary Files

- Utilized for the TRAFVU component for visualizing the simulation
- Contains information for each vehicle at a 1 second resolution
- Contains aggregated information for each time interval assigned by the user

Parsing Application Developed to Translate Binary Output

Time Step Data Files (TSD) - Individual Vehicle data

🖲 ParserCS 📃 🔲
Time Step Data Files
TSD Input D:\CMV Crash Cases\UArt\UrbanArt_90_V500\Baseline\ii
TSD Output D:\CMV Crash Cases\UArt\UrbanArt_90_V500\Baseline\L
VID Output
VSPHist
Parse TSD Number of Time Steps Number of Vehicles
Analyze VID
VID Input
VSP Hist
Analyze
Time Interval Data Files
TID Input
TID Output
Parse TID Number of Time Intervals
Time Summary Paraina 2 4622061 ages 11/iiling 29 2502516 ages
Time Summary, Flaising 3.4032001 secs, Wilking 23.3032016 secs

John A. Volpe National Transportation Systems Center

•

CORSIM to MOVES Mapping

CORSIM	MOVES							
Vehcile_Type	sourcetypeID	rollingTermA	rotatingTermB	dragTermC	sourceMass	fixedMassFactor	sourceTypeName	
1	21	0.156461	0.00200193	0.000492646	1.4788	1.4788	Passenger Car	
2	21	0.156461	0.00200193	0.000492646	1.4788	1.4788	Passenger Car	
3	52	0.561933	0	0.00160302	7.64159	17.1	Single Unit Short- haul Truck	
4	52	0.561933	0	0.00160302	7.64159	17.1	Single Unit Short- haul Truck	
5	52	0.561933	0	0.00160302	7.64159	17.1	Single Unit Short- haul Truck	
6	62	2.08126	0	0.00418844	31.4038	17.1	Combination Long-haul Truck	
8	21	0.156461	0.00200193	0.000492646	1.4788	1.4788	Passenger Car	
9	21	0.156461	0.00200193	0.000492646	1.4788	1.4788	Passenger Car	

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation

VSP Parameters

Link	SourceType	OpMode	Desc	Count
810082	21	0	Braking	0.00
810082	21	1	Idling	0.00
810082	21	11	Low Speed Coasting; VSP< 0;1<=Speed<25	0.00
810082	21	12	Cruise/Acceleration; 0<=VSP< 3; 1<=Speed<25	0.00
810082	21	13	Cruise/Acceleration; 3<=VSP< 6; 1<=Speed<25	0.00
810082	21	14	Cruise/Acceleration; 6<=VSP< 9; 1<=Speed<25	0.00
810082	21	15	Cruise/Acceleration; 9<=VSP<12; 1<=Speed<25	0.00
810082	21	16	Cruise/Acceleration; 12<=VSP;1<=Speed<25	0.00
810082	21	21	Moderate Speed Coasting; VSP< 0; 25<=Speed<50	0.00
810082	21	22	Cruise/Acceleration; 0<=VSP< 3; 25<=Speed<50	0.00
810082	21	23	Cruise/Acceleration; 3<=VSP< 6; 25<=Speed<50	0.00
810082	21	24	Cruise/Acceleration; 6<=VSP< 9; 25<=Speed<50	0.00
810082	21	25	Cruise/Acceleration; 9<=VSP<12; 25<=Speed<50	0.00
810082	21	27	Cruise/Acceleration; 12<=VSP; 25<=Speed<50	0.00
810082	21	28	Cruise/Acceleration; 18<=VSP<24; 25<=Speed<50	0.00
810082	21	29	Cruise/Acceleration; 24<=VSP<30; 25<=Speed<50	0.00
810082	21	30	Cruise/Acceleration; 30<=VSP; 25<=Speed<50	0.00
810082	21	33	Cruise/Acceleration; VSP< 6; 50<=Speed	0.04
810082	21	35	Cruise/Acceleration; 6<=VSP<12; 50<=Speed	0.49
810082	21	37	Cruise/Acceleration; 12<=VSP<18; 50<=Speed	0.43
810082	21	38	Cruise/Acceleration; 18<=VSP<24; 50<=Speed	0.03
810082	21	39	Cruise/Acceleration; 24<=VSP<30; 50<=Speed	0.01
810082	21	40	Cruise/Acceleration; 30<=VSP; 50<=Speed	0.00

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation

Operating Mode Distribution – Free Flow

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation

Operating Mode Distribution – Congestion

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation

Emissions Results

Urban Interstate

Duration = 90 min Partial and Full Closure

Closure	Volume	CO2 (grams)	CO (grams)	NOx (grams)	Energy (MMBtu)	PM10 (grams)	PM25 (grams)	SO2 (grams)	HC (grams)	VOC (grams)
Partial	1000	43296	1452	-19	0	8	7	2	29	27
Full	1000	2555818	15339	4877	30	305	293	46	1691	1657
Partial	2000	6631950	49575	17125	83	911	876	114	3163	3090
Full	2000	18126560	121890	38918	225	2360	2270	320	11087	10846
Partial	3000	21131530	150437	54987	265	2862	2753	361	10016	9790
Full	3000	38901130	266171	84789	488	5175	4973	689	23796	23272

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation

Dispersion Considerations

Nomenclature problem

- Traffic links

٠

٠

- Emission links
- Dispersion links

Emission allocation into AERMOD is not as straight forward as the MOBILE to CAL3QHCR input

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation

Dispersion Considerations (cont)

Specific Emission Problems

- When area sources are used, there is not a direct connect with MOVES and AERMOD (units of mass/time-area vs. mass/time)
- Determination of traffic link output to emission link input/output and dispersion link input requires considerable pre-planning by analyst (e.g., idle contribution at an intersection; where, how much, vehicle mode)

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation

Dispersion Considerations (cont)

Dispersion Specific Issues

٠

- Best way to approximate the line source using either volume or area sources
- Methodologies for input of initial plume parameters into AERMOD needs to be improved
- Chemistry (e.g., NO2/NOX ratio, HAPS)
- Consistent input between among users to meet the needs of reviewers
- Inconsistencies at near field receptor locations
- Need for verification

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation

Acknowledgments

Project Sponsor

٠

٠

- Federal Motor Carriers Safety Administration (FMCSA) – Michael Johnsen

Technical Support

- Federal Highway Administration (FHWA) Joon Byun
- University of Florida McTrans Center

John A. Volpe National Transportation Systems Center

U.S. Department of Transportation